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Preview
• “Omnigenity” = “collisionless particle trajectories are 

confined.”

• Quasisymmetry is sufficient but not necessary for 
omnigenity.

• Several properties of quasisymmetric plasmas apply 
with only minor modification to the larger set of 
omnigenous fields:

– Have a “helicity” (M, N), like quasisymmetry.

– Formulae for current & flow simplify dramatically.

• But, the radial electric field is different in 
quasisymmetric vs. omnigenous plasmas.
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Also equivalent: “effective helical ripple” eff → 0.

all trapped particles.
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Cary & Shasharina, PoP (1997), PRL (1997)

All toroidal
fields

Omnigenous AxisymmetricQuasisymmetric

Omnigenity is more general than quasisymmetry.
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Simakov & Helander, Plasma Phys. Control. Fusion 53, 024005 (2011):

In a nonaxisymmetric plasma, even if B is quasisymmetric, V·V drives a 
that is not.
 Helically electrostatically trapped particles slow the plasma.
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Can these optimized (,) patterns be 
embedded in a real 3D equilibrium?

• Garren & Boozer, Phys. Fluids B 3, 2822 (1991): 
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Current in an omnigenous plasma is described by 
a concise, explicit, analytical formula.
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Flow in an omnigenous plasma is described by 
a concise, explicit, analytical formula.
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Summary: omnigenity is an important limit.

• Relevant (at least for insight and code benchmarking) to any 
viable reactor.

• Easier to achieve than quasisymmetry, and  confinement and 
neoclassical transport are just as good.

• Using generalized helicity (M, N), concise, explicit, analytical 
formulae exist for  f, j, V, and Er.

• For omnigenous non-quasisymmetric B, Er is determined 
explicitly: 1 0.17 .i i i
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Landreman & Catto, Phys. Plasmas 19, 056103 (2012)
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If bootstrap current isn’t needed to make rotational transform, minimize it:

• Reduce drive for instabilities • Maintain optimization as pressure is varied.
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 ||To minimize ,  have  contours close poloidally 0  .j B B M 

If bootstrap current isn’t needed to make rotational transform, minimize it:

• Reduce drive for instabilities • Maintain optimization as pressure is varied.


