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Preview

e “Omnigenity” = “collisionless particle trajectories are
confined.”

* Quasisymmetry 1s sufficient but not necessary for
omnigenity.

* Several properties of quasisymmetric plasmas apply
with only minor modification to the larger set of
omnigenous fields:

— Have a “helicity” (M, N), like quasisymmetry.
— Formulae for current & flow simplify dramatically.

* But, the radial electric field is different in
quasisymmetric vs. omnigenous plasmas.
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For a reactor, then, a stellarator must be nearly omnigenous:
0 = Ay per bounce = CJS (Vd -Vw)dt for all x« and
bounce all trapped particles.

Equivalent definition: J 1s a flux function,
where J = CJSUH d¢ is the longitudinal invariant.

Also equivalent: “effective helical ripple” .4 — 0.
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Quasisymmetry iIs sufficient but

not necessary for omnigenit

. By OB
omnigenity iff O=<I>dt v,V = 227/'[ v, -V
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is a flux function, so integral is independent of y, so Z;f
v

Quasisymmetry:



Omnigenity Is more general than quasisymmetry.

Cary & Shasharina, PoP (1997), PRL (1997)
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Does a guasisymmetric stellarator permit

larger flows than a general stellarator?

Usual ordering for mean flow V in kinetic theory: V ~ O(px vy, ;).
When is the “high flow” ordering V ~ O(vy, ;) consistent?
Helander, Phys. Plasmas 14, 104501 (2007):
In order for V to be as large as ~O(vy, ;), the O(f vy, /L) terms in the ion
kinetic equation imply VBxVy -V(B-VB)=0 (quasisymmetry).
Sugama, Watanabe, Nunami, & Nishimura, Phys. Plasmas 18, 082505 (2011):

Actually, even Helander’s solution cannot satisfy
mnV-VV =-Vp+neE+nev xB
for each species unless B is strictly axisymmetric.

Simakov & Helander, Plasma Phys. Control. Fusion 53, 024005 (2011):

In a nonaxisymmetric plasma, even if B 1s quasisymmetric, V-VV drives a ¢
that 1s not.
—  Helically electrostatically trapped particles slow the plasma.
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E.g., deeply trapped particles at T would see a nonzero vy -V o« BxVB-Vy

— All B contours must link the torus toroidally, poloidally, or both.
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The quasisymmetry helicity (M, V) can be

generalized to omnigenity.

 Recall: all B contours encircle the torus poloidally, toroidally, or both.

* Define M and N: contours of B close after linking the torus M times toroidally
and N times poloidally.

New geometric consequence of omnigenity:
Apply Ampere’s Law to a
B contour on a flux surface:

<J5B dr = il x (enclosed current)

c .
MG + NI

BxVy-VB 29 MG+ NI +H
B-VB c\ M-gN

j where (H)=0.
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Omnigenous B(0,¢) patterns can be

constructed with a lot of freedom.

OA(6,B ..
e Exploit the fact that 599 ) =0 < omnigenity.

e Choose any A(B) and ¢ (¢.B) (with constraints at B and B, ).
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embedded In a real 3D equilibrium?
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Pressure-driven j and other properties of quasisymmetric

plasmas are isomorphic to those in a tokamak.

( do.
Tokamak: <j”B>:_4.8\/;q dp; dp _0.74n dl—l 17 dT; G
dW dy dy dy
Quasisymmetry: <j||B>=—4.8\/;q dp; dp O74ndl—1 17n dT; Y MG + NI

B=B(y,MO-NC) dl// dy dy dy ) M —gN
Pytte & Boozer PoF (1981), Boozer PoF (1983)

where G (y )= poloidal current

outside the flux surface,

I (w) = toroidal current

inside the flux surface
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Pressure-driven j and other properties of quasisymmetric

plasmas are isomorphic to those in a tokamak.

Tokamak: ( jjB)=—4.8Veg 9P| Pe 740 Te 1 170901 |
dw dy dy dy
Quasisymmetry: <j||B>:—4.8\/;q ap; dp —0. 74ndl—1 17n dT; | MG+ NS
B=B(y,MO-NC) dl// dy dy dy ) M —gN
General stellarator: Less insightful, e.g. reverse of <j”B> in helical symmetry.
3(B*
(§B)=—1.64—| (g,)- <2 >I1<g4>/1 dA {dp' e _.74n9Te 1170 di}
fe 4B "°(91) dy dy dy dy
3(B%) 1 2da
where ¢, =./1-4AB/B_ >, f. = :
=y Y

: 1
g, is defined by B-V %)szVty-V(?j and g, =0 at B=B,,

g4 1s defined by B-V %}:BXV(//-VLL} and g, =0 at B=B_,
g 9



Current in an omnigenous plasma is described by

a concise, explicit, analytical formula.

j =33 B NI+MGidp.  dpy o, dTe ;5 dTi
| B € q ed

<2> gN-M Jdy dy 7 W
2
+ 26 dpe+dIOi 1— B (NI + MG)+W
B(gN -M)\ dy dy <Bz>

Tokamak result with G — —(NI +MG)/(gqN - M)

2 | d G the toroidal & poloidal ts.
W = 2B (CIG . |) (v) and G(y) are the toroidal & poloidal currents
q
B ae oc

(WB) =0.




Flow In an omnigenous plasma is described by

a concise, explicit, analytical formula.

Vi =-1.17

2qB dTi(NI+MG)+2q(dCD ldpij(NI+MG+W)
|

_|_
e<Bz>dw (gN-M) dy endy (qN—M)|

Tokamak result with G — —(NI + MG)/(gN -M)

2
W — 2B (CIG o ) | (v) and G(y ) are the toroidal & poloidal currents.
g

_I_
el RV Ry

(WB) =0.




E. In a perfectly quasisymmetric stellarator is

determined differently than in a general stellarator.

Non-quasisymmetric stellarators:
* Neoclassical radial current depends on E..

* <jneoclassical. \% l//> > <jturbulence. \% W>
(Helander & Simakov, Contrib. Plasma Phys. 2010)

= You can solve for E, using j,..ociassicar’ ¥ ¥) = 0.
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Tokamaks & perfectly quasisymmetric stellarators:

* Neoclassical radial fluxes of 1ons and electrons are always

equal, regardless of E_(“intrinsic ambipolarity™)
(Helander & Simakov, PRL 2008)

= You cannot solve for E.neoclassically. Turbulent j matters.
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E. In a perfectly quasisymmetric stellarator is

determined differently than in a general stellarator.

Non-quasisymmetric stellarators:
* Neoclassical radial current depends on E..

<jneoclassical. \% l//> > <jturbulence. \% W>
(Helander & Simakov, Contrib. Plasma Phys. 2010)

= You can solve for E, using j,..ociassicar’ ¥ ¥) = 0.

Omnigenous stellarators: (new result)

(j-Vy)= (Zen 3(5 +T, j—nw —0.17n; S—TWJ<(departure from qua81symmetry)2>
4 R
do 1 ( T, dn, dT, )
— —— 4+ 0.17— Independent of the details of B.
dy Zel n dy dy

N /




Summary: omnigenity is an important limit.

* Relevant (at least for insight and code benchmarking) to any
viable reactor.

« Easier to achieve than quasisymmetry, and o confinement and
neoclassical transport are just as good.

« Using generalized helicity (M, N), concise, explicit, analytical
formulae exist for f, j, V, and E,.

* For omnigenous non-quasisymmetric B, E, 1s determined
explicitly: - dn; |
p y do _ 1 T dn,+0.l7ﬂ |
dy Zel n dy dy

Landreman & Catto, Phys. Plasmas 19, 056103 (2012)
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If bootstrap current isn’t needed to make rotational transform, minimize it:

* Reduce drive for instabilities e Maintain optimization as pressure 1s varied.
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Subbotin et al, NF 46, 921 (20006), Helander & Niihrenberg, PPCF 51, 055004 (2009).

= | (l//):_r//j-dzr.

dl 4zl dp 27 .

—=— + B

ov ™ ey aw ey
From last page: <jHB> oc (NI + MG).
So if B contours close poloidally (M = 0) rather than toroidally or helically,

(;j—l/lj =(...)1I. Boundary condition: | (y =0)=0.

= Self-consistent current profile is |(y)=0 with <j|| B> =0.

(Toroidal current j

inside a flux surface

—

If bootstrap current isn’t needed to make rotational transform, minimize it:

* Reduce drive for instabilities e Maintain optimization as pressure 1s varied.

To minimize <j||B>, have B contours close poloidally (M =0) .



